

Tomography and Precession Diffraction for 3D Structural Analysis of Nanocrystals

U. Kolb TU Darmstadt and University of Mainz

kolb@uni-mainz.de

Electrons: 10³ x stronger interaction with matter compared to x-rays

3D – data but limited to the selected crystal

Information available from electron diffraction

- single crystals in polyphasic samples
- phase analysis

- crystal orientation

- cell parameters
- possible space groups
- existence of centrosymmetry
- structure analysis
- superstructures
- twinning
- Stress/strain measurements
- disorder, defects, dislocations

→HRTEM

Excitation error s: crystal cannot be oriented fully (precision ←→ radiation damage)

Dynamical scattering:

Strong in oriented zones \rightarrow wrong intensities, violated extinction rules CBED: Use of dynamical effects, thick specimens >200 Å

Electron beam precession (Precession electron diffraction PED)

Double conical beam-rocking system for measurement of integrated electron diffraction intensities. R. Vincent, P.A. Midgley, *Ultramicroscopy*, **53**, 271 (1994).

Moving the Ewald sphere: Double diffraction reduction and reflection integration

Double diffraction along systematic row: e.g. (001) and (003) forbidden

non-precessed

Measured and (Multislice) simulated precession patterns

Measured and (Multislice) simulated precession patterns (L.D. Marks, Sinklair Northwestern Univ. USA) Example: Natural Mineral Al₂SiO₅ Orthorhombic Pnnm with 32 atoms/unit cell (Andalusite)

Bragg's Law Simulation

32 mrad

With increasing precession angle: Exponential decay of forbidden reflections

Linear decay of e.g. non-forbidden (002) reflection

Rate of decay is relatively invariant of the crystal thickness

Courtesy L.D. Marks,

ExperimentalMultislice

Precession diffraction angle

- increase of the number of diffraction spots intercepted by the Ewald sphere
- integration over the reflection intensity and reduction of the excitation error effect
- reducing the effect of slight misorientation of the sample
- reduction of the dynamical effects and the diffraction dependency on the thickness of the sample

Increasing precession angle \rightarrow increasing resolution in diffraction pattern (i.e. more diffraction spots are seen).

Example: Mayenite [111] Ca₁₂Al₁₄O₃₃ Space group: *I*43*d*

Selected Area Electron Diffraction (SAED) or Nano Electron Diffraction (NED) or (NBD)

Advantages of nanodiffraction

- free control over the beam size
- we do not unnecessarily damage the sample
- possible to move the beam over the crystal
- we are sure about the area we are collecting the information from

A-Star Acquisition

Acquisition of precession electron diffraction spot patterns

Non-precessed precessed

Orientation map

Phase map

Mg-Cu-Gd partly recrystallized metallic glass with Mg₂Cu and Cu₂Gd crystalline precipitates

Pt particles, Prof. P. Ferreira, J. Ganesh Univ Texas at Austin USA JEOL 2010 FEG (1 nm resolution)

Strain map

Rhee, Y. Du, P. S. Ho, Journal of Applied Physics, 93 (2003) 3926

Crystallographic Orientation and Phase Identification

Template generation using Diffgen of all possible simulated orientations (every1^o) within stereographic triangle for given crystal lattice(s) and symmetry

Degree of matching between experimental patterns and simulated templates is given by a correlation index ; highest value corresponds to the adequate orientation/phase < NanoMEGAS

Identification example: nanocrystalline Cu

NanoMEGAS

Different microscopes

Bank_[Brookite]_100_0.2

Bank_['Goethite' Pnma]

Advanced Tools for electron diffraction

M. Gemmi, IIT Pisa

Drug Delivery applications & Texture of nanoparticles

Unpublished results Courtesy of M Gemmi IIT Pisa Italy.

Matching of each collected pattern with a generated data bank

1 Fe3O4 nanoparticle (vertical view)

Several Fe3O4 nanoparticles self assembeld (lateral view)

Nanoparticle (50 nm) phase identification

Nanoparticle (50 nm) phase identification

Orientation map precession 0.3^o

PHASE map precession 0.3^o

ALL Nanoparticles

REVEALED AS

magnetite (RED)

INDEX and create virtual dark and bright field maps

Diffraction Pattern viewer with virtual aperure

3 existing phases: only possible to distinguish by precession

precession 0.4º

When stacking faults cross themselves, they produce locally a martensite structure (a= 2.87 A)

Austenitic matrix with fcc structure (a=3.58 A)

Stacking faults with hexagonal structure (a=2.57 c= 4.08 A)

In-situ ASTAR STEM characterization In-situ Orientation Imaging ncAu

3d data: Traditional approach – tilt series of oriented diffraction patterns

 ζ -phase Pigment Red 53:2

T. Gorelik, U. Kolb, M.U. Schmidt, Crystal Growth and Design 47(9) 3898-3903 (2009).

Ab initio structure solution by direct methods from PED data

single zone

Determination of Nb atom positions Cell parameters: a = 27.15 Å, b = 21.60 Å, c = 3.95 Å, space group Pbam

Ab initio determination of the framework structure of the heavy-metal oxide Cs_xNb_{2.54}W_{2.46}O₁₄ from **100 kV precession electron diffraction data**, Weirich et al., *Ultramicroscopy* **106** 164–175 (2006)

3D data

10 single zone patterns Cell parameters: a = b = 5.06 Å, c = 32.54 Å, space group P-3c1 refined on Synchrotron XRPD data

Structure solution of the new titanate Li₄Ti₈Ni₃O₂₁ using precession electron diffraction. M. Gemmi, H. Klein, A. Rageau, P. Strobelb, F. Le Cras, *Acta Crystallogr B* **66**, 60 (2010).

Crystal Structure of a Lightweight Borohydride from Submicrometer Crystallites by Precession Electron Diffraction. J. Hadermann, A. Abakumov, S. Van Rompaey, T. Perkisas, Y. Filinchuk, G. Van Tendeloo, *Chem Mater* **24**, 3401 (2012).

Reflection intensities and corrections

 $I(g) = \int |F(g) \sin(\pi t s_z)/(\pi s_z)|^2 ds_z$

 s_z taken appropriately over the Precession Circuit t is crystal thickness (column approximation) ϕ is total precession angle

Lorentz Correction: $|(g) = |F(g)|^2 L(g,t,\phi)$ K. Gjønnes, Ultramicroscopy, 1997.

Blackman 2 Beam approximation:

$$I_{Blackman}(t) = \int_{0}^{A_g} J_0(2x) dx; \ A_g(k) \propto tF(k)$$
$$s_z^{\text{eff}} = (s_z^2 + 1/\xi_g^2)^{1/2} \qquad \xi_g = \frac{\pi V_c \cos \theta_B}{\lambda F}$$

 $L(g,t,\phi) = g_{1}\left(1 - \left(\frac{g}{2p}\right)\right)$

Multislice Calculation:

Tilt series: Prominent zones from oriented single crystal selected

Quick and easy (off-zone diffraction: no crystal orientation needed)

Enhanced number of intensities

ADT data collection sequence – with and without precession

Taking care of camera length calibration

The additional focussing introduces rotation and contraction/expansion of the pattern \rightarrow change of the camera length

Tomography of the reciprocal space - ADT

25 nm

Real Space Tomography

Arslan et al., *Ultramicroscopy* **106**, 994–1000 (2006)

Reciprocal Space Tomography

 $\pm 60^{\circ}$ = 121 diffraction patterns Approx. 2h data collection time

3D reconstructed reciprocal space

 $Bi_{12}O_{17}CI_2$: superstructure

 $Li_2O/Al_2O_3/WO_3$: disordered

Steps necessary to reconstruct the reciprocal space

Diffraction data acquisition

Crystal tracking by beam shift \rightarrow diffraction shift (SAED small, NED more sensitive)

Finding the correct tilt axis

Importance of correct tilt axis

ADT – cell parameter determination using difference vector space

Cell parameter determination

by Clusteranalysis

Error of approx. 2% and triclinic cells directly accessible

Peakintegration after fine background substraction

Dataset h,k,l Int for "ab-initio" structure solution using X-ray programs

No further correction is performed on the extracted electron diffraction data

U. Kolb, T. Gorelik and M.T. Otten, Ultramicroscopy, 108, 763-772 (2008).

Indexing the facets: Silikalit-I and 50nm Au nanorod

ADT - Space group determination and intensity extraction

Barite (BaSO₄):

a = 8.884 Å, b = 5.458 Å, c = 7.153 Å, V= 346 Å³ Space group **Pnma** found directly by SIR08, only minor extinction violations

355 of 375 possible reflections at 0.7 Å resolution 95% coverage of reciprocal space

Zonal data: Ba, S ADT: Ba, S, 2O ADT+PED: Ba, S, 3O Max. dev: 0.06 Å Structure solution of known structures

Diffraction data quality:

Good detectability of light atoms

Sample applicability:

Smallest crystal used: Completeness of diffraction space ~300 nm organics ~70% triclinic \sim 30 nm inorganics ~90% monoclinic Largest analysed volume: 33000 Å³ Resolution: ~0.08 nm organics ~0.06 nm inorganics Largest number of independent atoms: 90 Average deviation of atomic positions Agglomerated and embedded samples (comparison ADT - X-ray): ≤ 0.01 nm Polyphasic materials

Highly beam sensitive material

Principle of tomography

Missing cone problem: ZSM-5 (twinned crystals)

View down b-axis

12 T sites; 10-member rings Si/O determined "ab initio"; Na by fourier map; EDX confirms small amount of Na Pnma: a = 20.1 Å, b = 19.9 Å, c = 13.4 Å, V= 5360 Å³ 2288 indep. reflections, completeness 79% mainly reflections in direction a* are missing

Detectability of atoms

Electron radiation: - atoms are less distinguishable

- light atoms are better visible next to heavy atoms

Elemental analysis (EDX) can deliver composition information

Carbamazepine Polymorph III: Solution "direkt methods" from SIR14

SIR: M. C. Burla, R. Caliandro, M. Camalli, B. Carrozzini, G. L. Cascarano, C. Giacovazzo, M. Mallamo, A. Mazzone, G. Polidori and R. Spagna, J. Appl. Crystallogr., 2012, 45, 357–361.

Si/Al: distinguishable via bond len(Si/(Ge, Ti, ...): chance to find majc

1,5-diaminoanthraquinone (DAAQ) - organic dye

Template: Hierarchical Mesomicroporous Zeolite ITQ-43

Si/Ge Zeolite + organic structure-directing agent, framework density 11.4 T-atoms /1000 Å³

3 sets of 12-ring channels of 6.8 Å× 6.1Å cloverleaf-like channels formed by 28-rings along c axis; pore diameters: 21.9 Å × 19.6 Å

J. Jiang, J. L. Jorda, J. Yu, L. A. Baumes, E. Mugnaioli, M. J. Diaz-Cabanas, U. Kolb, A. Corma, Science, 333(6046),1131-1134 (2011); J. Rius, E. Mugnaioli, O. Vallcorba, U. Kolb, *Acta Cryst.* **A69**, 396–407 (2013)

MOFs – highly beam sensitive material

MFU-4long

Bi(BTB): twinned crystals

Fm-3m, a=32.0 Å, V = 32,768 Å³ , resolution 1.3 Å, R(F)=32%, max. deviation to XRPD = 0.21 Å

D. Denysenko, M. Grzywa, M. Tonigold, B. Schmitz, I. Krkljus, M. Hirscher, E. Mugnaioli, U. Kolb, J. Hanns and D. Volkmer *ChemistryJ.Eur.* **17(6)**, 1837-1848 (2011); M. Feyand, E. Mugnaioli, F. Vermoortele, B. Bueken, J. Dieterich, T. Reimer, U. Kolb, D. de Vos and N. Stock, *Angewandte Chemie* 124, 10519 –10522 (2012).

High pressure - Hapy (<u>Hydrous Aluminum bearing Pyroxene</u>)

Problem: olivine and garnet + small crystals of a third unknow phase

New high-pressure phase synthesized in MgO- AI_2O_3 -SiO₂-H₂O system

Not detected by optical microscope and by X-ray powder diffraction.

Re-synthesized after structure solution and refined versa x-ray powder data

A new hydrous Al-bearing pyroxene as a possible water carrier in the subduction zones, M. Gemmi, J. Fischer, M. Merlini, P. Fumagalli, S. Poli, E. Mugnaioli, U. Kolb, *Earth and Planetary Science Letters* **310** 422-428 (2011)

High pressure – boron oxo nitride $(B_6N_4O_3)$

S. Bhat, L. Wiehl, L. Molina-Luna, E. Mugnaioli, S. Lauterbach, S. Sicolo, P. Kroll, M. Duerrschnabel, N. Nishiyama, U. Kolb, K. Albe, H.-J. Kleebe and R. Riedel, Chem. Mater. 2015 (in print)

Charoite - Murun Massif in Yakutiya, Sakha Republic, Siberia, Russia

[001] projection

- asbestos-like fibres typically around 200 nm diameter
- two phases: fibre axes almost parallel, a and b differently oriented
- fibres are laterally separated by an amorphous phase

Charoite-90: space group P2₁/m a=31.96 Å, b=19.64 Å, c=7.09 Å, β =90° **Charoite-96**: space group P2₁/m a=32.11 Å, b=19.67 Å, c=7.23 Å, β =95,9°

Hydroxyapatite – enamel and dentine $Ca(2)_6Ca(1)_4(PO_4)_6(OH)_2$

ADT analysis on 3 enamel and 2 dentine crystals deliver best solutions for P6₃

abbc*c*50 nm

Contrast differences: 02-21 and 02-2-1 02-22 and 02-2-2

 \rightarrow No mirror perpendicular to c

E. Mugnaioli, J. Reyes-Gasga, R. Garcia-García, U. Kolb, J. Hémmerlé, É. F. Brès, Chem. Eur. J. 20, 6849 – 6852 (2014)

Bi-sulfate incrustations, oxidation of bismuthinite (Bi₂S₃) Alfenza mine, Italy

Monoclinic spacegroup *Pc* or *P2*₁/*c*; a=22.0, b=16.7, c=15.9 Å, β =102.9°, strong disorder along a* → Structure could not be solved

Hexagonal *P*6₃*mc*, *P*-62*c* or *P*6₃/*mmc*, a=9.6, c=15.3 Å

 $Bi_{9-x}Te_{x}(OH)_{6}O_{8} \text{ clusters and }SO_{4} \text{ groups}$ EDX reveals only for this phase a small amount of Te

G. C. Capitani, E. Mugnaioli, J. Rius, P. Gentile, T. Catelani, A. Lucotti, U. Kolb, American Mineralogist, 99(2-3) 500-510 (2014)

Zeolite beta - stacking disorder visualized by ADT

Vaterite – superstructure solved ab-initio by direct methods

Space group C2/c

Space group C-1

Structure explains all features observed in the Raman spectrum

E. Mugnaioli, I. Andrusenko, T. Schüler, N. Loges, R. Dinnebier, M. Panthöfer, W. Tremel and U. Kolb, *Angewandte Chem.Int. Ed.*, **51(28)** 7041-7045 (2012)

The group

Enrico Mugnaioli

Photo: Dr. Peter Müller, MIT, Cambridge, MA

Tatiana Gorelik Galina Matveeva **Bastian Barton** Yasar Krysiak Haishuang Zhao

Andrew Stewart Sebastian Schlitt Iryna Andrusenko Acknowledgment

Thank you for your attention

Financial Support:

Stiftung Rheinland-Pfalz Innovation SFB 625 SPP 1415

